Serpentine diffusion trajectories and the Ouzo effect in partially miscible ternary liquid mixtures.

نویسنده

  • Rajamani Krishna
چکیده

This work investigates the transient equilibration process when partially miscible ternary liquid mixtures of two different compositions are brought into contact with each other. Diffusional coupling effects are shown to become increasingly significant as the mixture compositions approach the meta-stable regions of the phase equilibrium diagrams. The proper modelling of coupled diffusion phenomena requires the use of a Fick diffusivity matrix [D], with inclusion of non-zero off-diagonal elements. The primary objective of this article is to develop a simple, robust, procedure for the estimation of the matrix [D], using the Maxwell-Stefan (M-S) formulation as a convenient starting point. In the developed simplified approach, the Fick diffusivity matrix [D] is expressed as the product of a scalar diffusivity and the matrix of thermodynamic correction factors [Γ]. By detailed examination of experimental data for the matrix [D] in a wide variety of ternary mixtures, it is deduced that the major contribution of diffusional coupling arises from the contributions of non-ideal solution thermodynamics, quantified by the matrix of thermodynamic correction factors [Γ]. An important consequence of strong thermodynamic coupling is that equilibration trajectories are serpentine in shape and may exhibit incursions into meta-stable zones opening up the possibility of spontaneous emulsification and the Ouzo effect. If diffusional coupling effects are ignored, the equilibration trajectory is linear in composition space. For a wide variety of partially miscible ternary mixtures, it is demonstrated that the corresponding linear equilibration trajectories do not anticipate the possibility of emulsification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uphill diffusion in multicomponent mixtures.

Molecular diffusion is an omnipresent phenomena that is important in a wide variety of contexts in chemical, physical, and biological processes. In the majority of cases, the diffusion process can be adequately described by Fick's law that postulates a linear relationship between the flux of any species and its own concentration gradient. Most commonly, a component diffuses down the concentrati...

متن کامل

Dissolution or Growth of a Liquid Drop via Phase-Field Ternary Mixture Model Based on the Non-Random, Two-Liquid Equation

We simulate the diffusion-driven dissolution or growth of a single-component liquid drop embedded in a continuous phase of a binary liquid. Our theoretical approach follows a diffuse-interface model of partially miscible ternary liquid mixtures that incorporates the non-random, two-liquid (NRTL) equation as a submodel for the enthalpic (so-called excess) component of the Gibbs energy of mixing,...

متن کامل

Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.

Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of terna...

متن کامل

Flash-Point Prediction for Binary Partially Miscible Aqueous-Organic Mixtures

Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes and heterogeneous distillation processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of aqueous-organic system. To con...

متن کامل

Flash-point prediction for binary partially miscible mixtures of flammable solvents.

Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of flammable solvents. To confirm the predictive efficacy of the derived f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 41  شماره 

صفحات  -

تاریخ انتشار 2015